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Differentiating both sides, we get
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1 dp _ 32766 _0.652
2.302p ~ dT R 2302T
d ..
or ﬁ = 2.302 x 3276.6 x "1% - 0.652 % i)
From (i) and (ii}, we have
Py 2 P
or ugT = 2.302 % 3276.6 x T2 0.652 T .

We know that
At p = 0.1 bar,

log,, p = 7.0323 —

327
log,, (0.1) = 7.0332 —

327
-1=7.0323 -

or 0.652 log,, T = 8.0323 -

or log,, T = 12.319 -

3276.6

— —0.652 log,, T

... (given)

T - 0.652 log,, T

T 0.652 log), T

3276.6
T
5025.4

T

Solving by hit and trial method, we get

T=523 K
Substituting this value in eqn. (iif), we get
29454 x 10° 0.1x10° 01x10°
Ug x 523 = 2,302 x 3276.6 % T)Z - 0.652 x "'"'5“2"3—
563.17
= 27575 - 12.48
4

ie.,

v, = 2.139 m¥kg. (Ans.)

HIGHLIGHTS

1. Maxwell relations are given by

5).-
du j = .
()
M‘ v
2. The specific heat relations are
¢, —¢,= ﬂ-sz ;e

3. Joule-Thomson co-efficient is expressed as

(),

(&),
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4. Entropy equations (Tds equations) :

Tds=cdT-T [ai;—] dp
p

P
Tds = ¢ dT T(—P—-) d
Cv + aTu U

5. Equations for internal energy and enthalpy :

(&), -7 (), -»

P

dh

du = ¢, dT + {T(g%)

v

) -o-r(3)

ENGINEERING THERMODYNAMICS

“P} dv

dh = c,dT + {v—T(%)p} dp

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer :
1. The specific heat at constant pressure (¢ } is given by

g8
(@je,=T [a‘r‘]
p

d
ooer(3)
1]

The specific heat relation is
2

(4]
@ (c,~c)= 2

© (¢, —c)= I?TIS

The relation of internal energy is

(@) du = [Ecp) dp + (5% '“PJ.du

p

(c)du= [%—cp) dp + (Sﬁ-— v) dv

Tds equation is

(@) Tds = e dT + 2 dv

(e) Tds = c dT +

(a)

X
B

2 (o)

dv

()] ¢, = T (%—Z)
]

de,=T ["QT)

TK
®6-e) G
v
(d) (cp--cu) = _K_E :

(b) du = (%cv)dp + [-% +dev

[
v
{d) du = (%—cp) dp + (% —p) dv.

(6) Tds = c,dT - %ﬁ dv

@ Tds =cdl+ B dp.

Answers

3 (o)

4. (a)

(1)

(2)

(1)

..[1 (@)]

-(2)

[2 (a)]
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EXERCISES

Define the co-efficient of :
(i} Volume expansion (ii) Isothermal compressibility
(iii) Adiabatic compressibility.
Derive the Maxwell relations and explain their importance in thermodynamics.
Show that the equation of state of a substance may be written in the form

dv

— =-Kdp + pdT.
A substance has the volume ex:ansivity and isothermal compressibility :
p= %r K= ;1;
Find the equation of state. [Ans % = constant]
For a perfect gas, show that the difference in specific heats is
Cp - Cu = T -
For the following given differential equations,
du = Tds — pdv
and dh = Tds + vdp

prove that for perfect gas equation,

) -0t (8] -0

Using the cyclic equation, prove that

(%) - £

5

Prove that the change in entropy is given by
ds = 5L|Kz dp + £\ dv
TP - Br :

Deduce the following thermodynamic relations :

o) or(®) o8] () o)

Show that for a Van der Waals gas

R
T % T"mw-bR/RTY
A gas obeys p(v ~ b) = RT, where b is positive constant. Find the expression for the Joule-Thomson co-
efficient of this gas. Could this gas be cooled effectively by throttling ?

The pressure on the block of copper of 1 kg is increased from 10 bar to 1000 bar in a reversible process
maintaining the temperature constant at 15°C. Determine :

(i) Work done on the copper during the process (ii) Change in entropy
(iii} The heat transfer (iv) Change in internal energy
{v} (¢, - ¢,) for this change of state.
The following data may be assumed :
Volume expansivity (f) = 5 x 10-%/K
Isothermal compressibility (K) = 8.6 x 1012 m#N
Specific volume (v} = 0.114 x 10~ m¥kg
[Ans. (i) - 4.9 J/kg ; (ii) - 0.57 J/kg K ; (i) — 164 J/kg ; (iv) — 159.1 Jkg ; 9.5 J/kg K]
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Ideal and Real Gases

8.1. Introduction. 8.2. The equation of state for a perfect gas. 8.3. p-v-T surface of an ideal gas.
8.4. Internal energy and enthalpy of a perfect gas. 8.5. Specific heat capacities of an ideal gas.
8.6. Real gases. 8.7. Van der Waals’ equation. 8.8. Virial equation of state, 8.9, Beattie-Bridgeman
equation. 8.10. Reduced properties. 8.11. Law of corresponding states. 8,12, Compressibility chart.
Highlights—Ohbjective Type Questions-—Theoretical Questions—Unsolved Problems.

8.1. INTRODUCTION

An ‘ideal gas’ is defined as a gas having no forces of intermolecular attraction. The gases
which follow the gas laws at all ranges of pressures and temperatures are considered as “ideal
gases”. However, ‘real gases’ follow these laws at low pressures or high temperatures or both.
This is because the forces of attraction between molecules fend fo be very small at reduced pres-
sures and elevated temperatures.

An ideal gas obeys the law pv = RT. The specific heat capacities are not constant but are
functions of temperature. A perfect gas obeys the law pv = RT and has constant specific heat
capacities.

A perfect gas is well suited to mathematical manipulation and is therefore a most useful
model to use for analysis of practical machinery which uses real gases as a working substance.

In reality there is no ideal or perfect gas. At a very low pressure and at a very high tem-
perature, real gases like hydrogen, oxygen, nitrogen, helium etc. behave nearly the same way as
perfect gases. These gases are called semi-perfect or permanent gases. The term semi-perfect has
the implication that the behaviour of the gases are nearly the same as that of a perfect gas. The
term ‘permanent’ was used for these gases by earlier chemists who thought that these gases did
not change their phase (i.e., did not condense to a liquid state). Hence they are called permanent
gases. There is no gas which does not change phase, and there is no permanent gas in the real
sense. However, these gases can be changed into a liguid phase only if they are subjected to a great
decrease in temperature and increase in pressure.

All gases behave in nearly in a similar way, especially at pressures considerably lower than
the critical pressure, and at temperatures above the critical temperature. The relation between
the independent properties, such as pressure, specific volume and temperature for ¢ pure sub-
stance is known as the ‘equation of state’. For engineering calculations, the equation of state for
perfect gases can be used for real gases so long as the pressures are well below their critical
pressure and the temperatures are above the critical temperature.

8.2. THE EQUATION OF STATE FOR A PERFECT GAS

Boyle’s law. It states that volume of a given mass of a perfect gas varies inversely as the
absolute pressure when temperature is constant,
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